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Multivariate Spline Functions. II. Best Error Bounds
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The theory of best approximation and best error bounds is sketched. It is
observed that spline functions provide the best approximating functions, and
then an analysis is presented which obtains best error bounds for the use of two­
variable spline functions in interpolation, differentiation, and integration
problems.

1. INTRODUCTION

Multivariate spline functions were constructed and discussed in Part I
of this paper (Arthur [1]). It was mentioned there that their properties make
them useful for interpolation and other practical problems. We construct,
in what follows, bounds for these applications.

The type of bound required is that introduced by Golomb and Wein­
berger [2]. It has the property of being "optimal," in the sense of being
attained for some function in the space considered. For the case of inter­
polation, differentiation and integration in one variable, Secrest [6), [7] has
shown the connection with spline functions.

It is our purpose to extend this connection to splines in more than one
variable, and we shall require a different method from Secrest's. In Section 2
we quote the results from Part I which we require for our method.

Section 3 contains the theory of best approximation and error bounds,
and in Sections 4 and 5 we consider computation of bounds for interpolation,
numerical differentiation, and numerical integration. Section 6 contains
some concluding remarks.

To simplify the analysis, we shall restrict ourselves to the case of two
variables. For more variables, the results are similar, and are obtained by
an identical method.

Notation. We shall use, throughout, the notation

i _ EJi+if
jj = EJx; oyi .
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2. Two-VARIABLE SPLINE FUNCTIONS

Suppose we are given points {Xi}:'=l and {Yj}~=l , where

a ~ Xl < X2 < ... < Xk ~ b,

c ~ .h < Y2 < '" < Yl ~ d,
(2.1)

and we wish to construct a two-variable spline function, sex, y), of degree
2m - 1 in X, and 2n - 1 in Y, satisfying interpolation constraints

Then define

i = I, ... , k, j = 1,... , I. (2.2)

m . (-l)m [ 2m-I, m m 2m-l
K1(x, S) = I Ci(X) Ci(S) + (2 _ 1)' (x - s)+ TIL (Xi - Xj)+

i~l m. i=l i=l

and

K2(y, t) = ~1 di(y)di(t) + (2~-~)~)f [(y - t)~n-l + ~1 tl (Yi - Yi)~n-l

X di(y)diCt) - i~l {(y - Yi);n-ld;(t) + (Yi - t)~n-1d;(y)}l (2.4)

where

and

Let

nn Y - Yi
d;(y) = ---,

i=l Yi -}i
i"'i

i = 1,... , In,

i = 1, ... , n,

z ~ 0,
z <0.

(2.5)

(2.6)

(2.7)

Then

K(x, s; y, t) = K1(x, s) K2(y, t).

k I

s(x, y) = I I !XiiK(X, Xi ; Y, Yi),
i=l j~l

(2.8)

(2.9)

where the constants !Xii are determined from (2.2).
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(2.10)

The properties of this spline function (and its extensions to more general
conditions) are discussed in Part I [1].

If A* is any linear functional in

\ m-l n-l b d

.!f(m,n) = lA: "J = i~ j~ fa fef/(x, y) dfLtlx , y),

fLij are of bounded variation~,

(whereflies in some suitable Hilbert space, e.g. (3.11», which is independent
of those used in (2.2), then we may add another condition,

A*S = r*,

to (2.2). The resulting spline s* is then given by

k !

s*(x, y) = L L IX/;K(x, Xi; Y, y;) + n:*,.\<s,tlK(x, s; y, t),
i~l j~l

where the constants are determined from (2.2) and (2.11).
s* satisfies the important minimization property that

(2.11)

(2.12)

f r(fom(x, y;»2 dx + f r (fnO(Xi , y»2 dy +rr (fnm(x, y»2 dy dx,
;~l a i~l cae (2.13)

is at a minimum whenf = s*, for allfin a certain Hilbert Space (see (3.11»,
satisfying interpolation constraints of the form (2.2) and (2.11).

3. THEORY OF BEST ApPROXIMATION

As in Golomb and Weinberger [2], and Secrest [6], let H be a real Hilbert
Space, and F a continuous linear functional, F: H --+ IR.

Consider the ball defined by

Suppose we are givenfE H satisfying (3.1) and

(3.1)

i = 1,... , n, (3.2)

where Ai are given continuous linear functiona1s. The problem is: determine
U E H such that

sup [F(u) - F(f)1
fE'C

is minimum, (3.3)
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where C(} = {f E H: (f, f) ~ r 2, AJ = r i , i = 1,... , n}. We assume that F and
{A i };=l are linearly independent, and that C(} is nonempty.

Any function f E C(} may be written

f = u + F(f) - F(u) v + H'
F(v) ,

where v has the properties

(3.4)

Aiv = 0, i = I, ... , n, qv Ii = 1, F(v) = sup F(z), (3.5)
ZE.r

where

and

Now

and so

!T = {z: Aiz = 0, i = 1,..., n, 11 z II = I},

WE {z: A;z = 0, i = 1,... , n, F(z) = O}.

(u, v) = (u, w) = (v, w) = 0,

(3.6)

(3.7)

(3.8)

or

2 ~ ( F(v) - F(u»)2 " ,
r ~ (f,f) - (u, u) + F(v) (t, t:) + (11, w),

F(u) - F(v)[r 2 - (u, U)]1/2 ~ F(f) ~ F(u) + F(v)[r 2 - (u, U)]1/2. (3.9)

F(u) is the best approximation to F(f), and has error E bounded by the
best error bound given by

E ~ F(v)[r 2 - (u, U)]1/2.

Now choose H to be the Hilbert Space

(3.10)

{fE C:-=-f[a, b; c, d]:f~'-=-~ is absolutely continuous;

.fom(x, Yi) E 2'2[a, b], i = 1,... , n; J~o(x; , y) E 2'2[C, d], i = I, ... , m;

andf~m E 2'2[a, b; c, dn, (3.11)

with scalar product

cr, g) = rf fn"'(x, y) gn"'(x, y) dy dx + f rfo"'(x, y;) gom(x, y;) dx
a C j=l a

+ f ffnO(Xi,y)gnO(Xi,y)dy+ f If(Xi,y;)g(Xi,y;), (3.12)
i=l c i=l j=l

where the Xi and y; are given by (2.1). Let Ai;, i = I,... , k, j = I,... , I be
given by (2.2).
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Section 5 of Part I then tells us that the u we require is precisely the
spline function given by (2.9).

Now define M by

M = f r Un"'(x, y))2 dy dx
" c

+ f f Uorn(x, yj))2 dx + I r UnO(x,: , y))2 dy.
j=l a i=l c

Then r2 - (u, u) becomes

since u interpolates to f, and our error bound is

E ~ F(v) U1/2•

(3.13)

(3.14)

(3.15)

By ignoring the part of U containing u, we obtain E ~ F(v) M1/2, which
is a bound of Sard-type (see Sard [3, p. 203ft']). Part I tells us that such
a bound is "best" in the sense of being attainable. Thus (3.15) is the "best"
error bound obtainable for our approximation problem.

In Sections 4 and 5 we shall examine those particular F which give us
interpolation, numerical differentiation and numerical integration.

4. INTERPOLATION AND NUMERICAL DIFFERENTIATION

Suppose we choose the functional F to be given by

F(f) = f(x*, y*). (4.1)

If we can identify v, and calculate v(x*, y*), then (3.15) will provide an
optimal bound for the use of u(x*, y*) as an interpolated value from the
data (2.2).

LEMMA 4.1. Suppose s is the spline function of degree 2m - 1 in x and
2n - 1 in y, satisfying

i= I, ... ,k, j= 1'00.,1, s(x*, y*) = 1, (4.2)
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then s can be expressed uniquely in the form

k !

sex, y) = 00*K(x, x*; y, y*) + I I ooijK(x, Xi; y, Yi), (4.3)
;=1 j=l

where 00*, Ciii are constants.

Proof This result follows immediately from the theory sketched in
Section 2.

THEOREM 4.2. Let E be the error due to using u(x*, y*) as an approxima­
tion to f(x*, y*). Then

(4.4)

where U is given by (3.14), and 00* is the constant in (4.3).

Proof. If II . II is the norm generated by (3.12), and s is as defined in
Lemma 4.1, then the minimization property (2.13) shows that

has the properties

v = sill sII, (4.5)

II v 11= 1, vex; ,Yi) = 0, i = 1,... , k, j = 1,... , I, (4.6)

and v(x*, y*) is the maximum possible for functions satisfying (4.6). Hence
v(x*, y*) is the F(v) required for (3.15).

We require II s II, and so calculate (s, s). The first term is

bJdJ = J (snnl)2 dy dx.
a c

Integrate by parts with respect to both variables, use (4.2) and the boundary
conditions on s (see [1]), to obtain

J = (- I)m+n {k (' s;::'-=-f(x, y) s/(x, y) dy dx
Xl 111

where ,8;* is the coefficient of (x - X;)~'-l (y - y*)~n-1/(2m - I)! (2n - I)!,
,8*i is the coefficient of (x - x*);m-1 (y - Yi);n-1/(2m - 1)1 (2n - 1)1, and
,8** is the coefficient of (x - x*)~m-1 (y - y*)~n-1/(2m - I)! (2n - I)! in
sex, y).
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Examination of sex, y) shows that such terms arise only in the function
K(x,x*;y,y*), and

(4.8)

(4.9)

(4.1 0)

1 ~ i ~ m,
i > m,

{J** = (-I)m+n a*,

i-(-l)m+n a*c;(x*)
(J;* = lo

!o
-(_l)m+n a*diCy*)

{J*j =
1 ~j ~ n,
j > n.

The next term in (s, s) is L;~1 S: (som(x, yj))2 dx. Consider

b bf (som(x, Y1W dx = (_l)m-1 f s~m-1(x, Y1) so\x, YI) dx
a a

= (-I)m ys(x*, Y1), (4.11)

where 'Y is the coefficient of (x - x*)~m-1/(2m - I)! in sex, Y1)' Inspection
of K(x, x*; y, y*) yields

(4.12)

Treat the other terms similarly, and also the third part of (s, s) to find

n b n

L f (som(x, Yj»2 dx =:Y* L dJCy*) s(x*, Yj), (4.13)
j~1 a j=1

and

f r (snO(x; ,y»)2 dy =:Y* f c;(x*) s(x;, y*). (4.14)
i=l c i=l

Now (4.7)-(4.10), (4.13) and (4.14) give

(s, s) = a*. (4.15)

U may be computed straightforwardly from the representation (2.9)
for u, and then (3.15) gives us the error bound (4.4).

We may treat numerical differentiation similarly, choosing, as the last
condition in (4.2), SqP(x*, y*) = I, for estimation of fqp(x*, y*). We use
the corresponding linear functional in (2.12), and obtain the same bound (4.4).

5. NUMERICAL INTEGRATION

We now choose F to be defined by

F(f) = rrf(x, y) dy dx,
a c

(5.1)
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and seek a "best" error bound for numerical integration in two variables
using spline functions.

LEMMA 5.1. Suppose s is the spline function of degree 2m - I in x and
2n - I in y, satisfying

s(x;, y;) = 0, i = 1,... , k, j = 1,... , I,

then s can be expressed uniquely in the form

b rdJ sex, y) dy dx = 1,
a • c

(5.2)

k I

sex, y) = cx*P(x) Q(y) + L: L: exijK(x, Xi ; y, y;), (5.3)
i~l j~l

where

J
b d

P(x) Q(y) = JK(x, s; y, t) dt ds,
(( C

and ex*, exij are constants.

(5.4)

Proof This follows, as in Lemma 4.1, from the theory sketched in
Section 2. Note that the integral in (5.4) can be separated as the product of
a function of x and a function of y since K has the same property.

The spline function s provides an extension of the concept of monospline,
used in the one-variable case by Schoenberg ([4] and [5]).

THEOREM 5.2. Let E be the error due to using f: f: u(x, y) dy dx as an
approximation to f: f~f(x, y) dy dx. Then

(5.5)

where U is given by (3.14), and ex* is the constant in (5.3).

Proof As in Theorem 4.1, we find that sill sII is the function, v, we
require. Our bound is obtained after calculation of F(u) = 1/11 s II.

Thus we calculate (s, s). Firstly, note

xE[a,b], (5.6)

n (-l)n [ (y _ c)2n n n 2n-l
Q(y) = ~lFA(Y)+ (2n -I)!.- 2n + tl~lF;(y;-Yj)+ di(y)

- tl !F;(y - Yj)~n-l - (Yj ~ c)2n d;(y)il, y E[c, d], (5.7)
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where

Ei = rCi(t) dt, i = I,... , m,
a

Fj = rdJCt) dt, j = 1,... ,11.
e

The first term of (s, s) is

9

(5.8)

(5.9)

(5.10)

(5.3) tells us that s~:' has the form of a combination of 8,,{x) 811 (y) plus
m n ~ j

(X*( _l)m+n [1 + Li=l Ei8,,;(x)][1 + Lj=1 Fj811/y)], where 8,,;(x) and 8I1j(y)
are Dirac delta functions. (5.2) then shows that (5.10) has the form

b d m d n b

(X* J f sex, y) dy dx + (X* I Ei f S(Xi' y) dy + (X* I Fj f sex, Yj) dx.
n c i=1 c j~1 a (5.11)

The next term in (s, s) is

s~m(x, Yj) is a linear combination of 8" (x) plus (_1)m+1 (X*Fj , and so (5.12)
becomes •

-(X* I Fj r sex, Yj) dx,
j=l (f

and, similarly, the last term in (s, s) is

-(X* f Ei rs(xi ,y) dy.
i=l C

(5.13)

(5.14)

(5.11), (5.13), and (5.14) give

II s 11 2 = (s, s) = cx*rrsex, y) dy dx = cx*, (5.15)
a, e

and our error bound, (5.5), for numerical integration using spline functions
follows from (3.15).



IO D. W. ARTHUR

6. CONCLUSION

The bounds we have obtained in Sections 4 and 5 have the very important
property of optimality, in the sense of being attained for some function in
the relevant Hilbert Space.

Their computation is, however, extremely time-consuming in practice.
Indeed, for interpolation and numerical differentiation, the bounds obtained
apply only to one particular point, and not to the whole range. Also, each
bound requires more computation than the estimate itself, as another, more
complicated, spline function has to be computed, as well as a nontrivial
expression, (3.14), involving the given function and the approximating spline
function.

Another practical drawback, applying to the method used here, is that
computation of spline functions using the K(x, s; y, t) representation tends
to be ill-conditioned. [I] gives a stable method suitable for finding the u
used in Section 3, but not for finding the s used in Sections 4 and 5.
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